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attributable to the mathematical formulation of the prob-
lem, the numerical procedure, and the computational accu-A series of bistatic radar cross sections of a perfectly conducting

sphere over a frequency range were processed on one shared and racy. For the scattering simulation, the Maxwell equations
three distributed memory computers. A comparative study was in the time domain can be formulated in total-field and
conducted for both the total field and the scattered field formula- scattered-field variables (5, 6). In a homogeneous and iso-tions. The accuracy criteria for the grid point density per wavelength

tropic medium where the governing equations are linear,and the placement of the truncated far-field boundary were also
the superposition principle prevails. Since all electromag-established for the present characteristic-based finite volume

scheme. The numerical accuracy of all simulations has been vali- netic excitations satisfy the Maxwell equations, the scat-
dated with theoretical results. Q 1996 Academic Press, Inc. tered-field formulation can also be viewed as the result of

a dependent variable transformation from the total field,
and the system of equations is unaltered. The change in

INTRODUCTION
the differential system rests only on the imposition of initial
and boundary conditions. The scattered-field formulationTo date, the finite-difference and finite-volume methods
is frequently adopted for computing diffraction and refrac-for solving three-dimensional Maxwell equations in the
tion (1, 7). The advantage of the scattered-field formulationtime domain (FDTD or FVTD) have very limited practical
is easily understood: it eliminates completely the quasi-applications ranges (1–3). The limitation arises from the
physical error involved in the incident wave when it propa-unique features of truncation error in computing time-
gates from the far-field boundary to the scatterer. Thisdependent phenomena and the low numerical efficiency
accuracy advantage is significant when the equivalent fieldof existing procedures. In essence, the truncation error
theorem is invoked to accomplish the near-to-far-fieldin time dependent simulations leads to dissipation and
transformation (8, 9). In the present investigation, the spe-dispersion which induces attenuated wave amplitude and
cific comparison of numerical results generated by the twophase shift (4). In order to control the quasi-physical effects
formulations will be highlighted.of numerical simulations to be within an acceptable toler-

The physically incorrect value and the poor implementa-ance, a certain grid density must be maintained. For most
tion of initial and boundary conditions are another majorpopular second-order accurate numerical methods using
source of error in the computations. The appropriate place-an unstaggered mesh system, the rule of thumb is 15 nodes
ment and type of boundary/initial conditions also have aper wavelength (1, 3). However, the simple grid density
determining effect on the numerical accuracy. The Max-criterion becomes insufficient when the computational do-
well equations in the time domain constitute a hyperbolicmain contains multiple media with a wide range of charac-
system. Solutions of the equations system may not be ana-teristic impedances. For an electromagnetic simulation
lytic and have distinctive domains of dependence whichassociated with a large-scale configuration at high frequen-
are defined by eigenvalues of the governing equations (10).cies, the required number of mesh points to meet an accu-
The demarcation between zones of dependence is de-racy specification is often beyond the reach of conventional
scribed by characteristics. Along these time-space trajecto-computing systems. Therefore, in high frequency spectra,
ries, the wave content is invariant. Therefore, the existencethe FDTD or FVTD schemes can only be used for simula-
of characteristics permits the splitting of wave componentstions associated with compact dimensions. This limitation
according to the signs of phase velocity in each spatialcan be alleviated in principle through the development of
direction (11–13). The directional information of a wavemore accurate algorithms for solving the basic governing
motion can be used equally effectively as an absorbingequations, using scalable high performance computing sys-
boundary condition (14–16) to suppress the spuriously re-tems, and a combination of both.

The inaccuracies incurred by numerical simulations are flected waves at the truncated computational boundary (3,
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11–13). On the scattering surface, the split flux is also of the engineering accuracy need and the range of scalabil-
ity will be made to guide future research for high perfor-essential for imposing the electric and magnetic field condi-

tions simultaneously on an unstaggered grid system. mance computing in CEM.
In practice, the dissipative and dispersive error of time-

dependent calculations can be assessed and alleviated by NUMERICAL ALGORITHM
grid refinement. For the scattering simulation, the place-

The time-dependent Maxwell equations for the electro-ment of the computational far field becomes a concern.
magnetic field can be given as (8, 9)The objective of simultaneously minimizing the size of the

computational domain and the contamination of reflected
waves from the numerical boundary creates conflicting re- B

t
1 = 3 E 5 0 (1)

quirements. This numerical peculiarity is algorithm and
computational procedure dependent. A grid refinement as
well as a study of the placement of the far-field boundary D

t
2 = 3 H 5 2J (2)

is carried out in the present analysis. However, the basic
approach to lifting the accuracy limitation must be derived = ? B 5 0, B 5 eH (3)
using high-order schemes or spectral methods (17–19).

= ? D 5 0, D 5 «E, (4)Both approaches can yield numerical solutions of similar
accuracy but at a much lower grid point density than that

where « and e are the electric permittivity and the magneticof the commonly used second-order schemes.
permeability which relate the electric displacement to theThe computational efficiency can be enhanced substan-
electric field intensity and the magnetic flux density to thetially by using scalable multicomputers (20, 21). The effec-
magnetic field intensity, respectively.tive use of a distributed memory, message-passing homoge-

The time-dependent Maxwell equations can be cast inneous multicomputer still requires a tradeoff between a
flux vector form on a general curvilinear and body confor-balanced work load and interprocessor communication.
mal frame of reference by a coordinate transformationIn previous efforts, the characteristic-based finite-volume
from the Cartesian system. The governing equations be-procedure has been successfully mapped onto the Intel
come (3, 12)Touchstone Delta and the Intel Paragon XP/S systems

(22–24). In order to increase the potential for greater por-
tability of the parallel computer code to a wider range of U

t
1

Fj

j
1

Fh

h
1

Fz

z
5 2J, (5)

multicomputers, the parallelized version of the FVTD code
is mapped onto an IBM SP2 and a Cray T3D system. The

where U is the transformed dependent variable now scaledadopted message-passing interface libraries are the PVM
by the local cell volume, V; and Fj , Fh , and Fz are the(parallel virtual machine) and MPI (message-passing inter-
contravariant components of the flux vectors of theface) (25, 26). Since the present one-dimensional domain
Cartesian coordinates which are the basic frame of refer-decomposition strategy (22–24) is not designed to mini-
ence of the present analysis.mize node-to-node communication for a FDTD or FVTD

algorithm, the performance of the combination of message
length and transmitting frequency for practical applications U 5 hBxV, ByV, BzV, DxV, DyV, DzV jT (6)
will be recorded for future reference.

Fj 5 (jx Fx 1 jy Fy 1 jz Fz)VIn the present investigation, the scattering phenomena
are simulated on four high-performance computing sys- Fh 5 (hx Fx 1 hy Fy 1 hz Fz)V
tems using a cell-centered, upwind finite-volume scheme

Fz 5 (zx Fx 1 zy Fy 1 zz Fz)V (7)for time-dependent, 3D Maxwell equations (3, 12). Spe-
cifically, the radar cross sections (RCS) of a perfectly elec-

where the flux vector components of the Cartesiantrical conducting (PEC) sphere are computed by both the
frame aretotal-field and scattered-field formulations. The incident

waves are time harmonic, linearly polarized in negative z
Fx 5 h0, 2Dz/«, Dy/«, 0, Bz/e, 2By/ejTaxis (8). The wave numbers (k) have a range from 4.6 to

20 for which analytic solutions are known (6). The effects Fy 5 hDz/«, 0, 2Dx/«, 2Bz/e, 0, Bx/ejT (8)
of placement of the truncated numerical domain and the

Fz 5 h2Dy/«, Dx/«, 0, By/e, 2Bx/e, 0jTgrid density refinement on the RCS results are analyzed
and delineated. Efforts are also made to define and validate
the range of the parallel scalable performance of the pres- and jx , hx , zx , jy , hy , zy , jz , hz , and zz are the nine metrics

of the coordinate transformation.ent code. From the present investigation, an assessment
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The total field formulation can be cast in the scattered where A denotes the amplitude of the incident wave. For
the present investigation, the wave amplitude is assignedfield form by replacing the total field with scattered field

variables (5, 6), a value of unity.
Initially, the incident field is specified over the incoming

half of the entire computational domain, and the downwindUs 5 (Ut 2 Ui). (9)
shadow domain remains unperturbed. This initial condi-
tion is preferred over the prescription of a completelySince the incident field, Ui , must satisfy the Maxwell
quiescent computational domain for reducing the transientequations identically, equations of the scattered field re-
period of incident excitation.main unaltered from the total field formulation. Thus, the

Thefar-fieldboundarycondition of thetruncatednumeri-scattered field formulation can be considered as a depen-
cal domain remains one of the most difficult problems en-dent variable transformation from the total-field equations.
countered in computational electromagnetics (CEM) (1–3,For this reason, the notations in the scattered-field and the
11). All numerical scattered field simulations in the time do-total-field formulations are indistinct in the subsequent
main must be conducted in a truncated computational do-derivations. In the present approach, both formulations
main. Unavoidably, spurious wave reflections will takeare solved by a characteristic-based finite volume scheme.
place at the artificial boundary. The reflected waves areThe discretized equations then degenerate into the balanc-
known to induce inaccurate patterns for interacting wavesing of a flux vector aligned with the surface area vectors
and erroneous accumulations of radiation energy (3, 7, 11).(3, 12).
In principle, if one of the coordinates is aligned with theThe characteristic-based finite-volume approximation is
direction of wave motion, the split flux of the characteristic-achieved by splitting the flux vector according to the signs
based scheme is identical to the compatible condition at theof eigenvalues of the coefficient matrix in each spatial
truncated far-field boundary. For the present formulation,direction (27). The flux vector at any cell interface is repre-
an effective approximation is easily implemented by settingsented by a superposition of two components from F 1

j ,
a null value for the incoming flux component in the radialF 2

j , F 1
h , F 2

h , F 1
z , and F 2

z depending on the direction of the
direction. In the present simulation, the scattered field doeswave motion (3, 12). At the cell surfaces, the split flux
not have spherical symmetry. Therefore, the vanishing in-vectors are calculated by the reconstructed dependent vari-
coming flux condition at the truncated far-field boundaryables on either side of the interface according to the k
degenerates into an approximation (11–13):scheme (28, 29),

F 2
j (jo , h, z) 5 0. (12)

Fj ,i11/2 5 F 1
j (UL

i11/2) 1 F 2
j (UR

i11/2)

Fh, j11/2 5 F 1
h (UL

j11/2) 1 F 2
h (UR

j11/2) (10) For simulations of a scattered field by a sphere, the solid
surfaces are assumed to have perfect electrical conductiv-

Fz,k11/2 5 F 1
z (UL

k11/2) 1 F 2
z (UR

k11/2), ity. The appropriate boundary conditions at the surfaces
of the sphere are (5, 8):

where UL and UR denote the reconstructed dependent
variables at the left and right sides of the cell interface, re- n 3 (E1 2 E2) 5 0
spectively.

n 3 (H1 2 H2) 5 Js
(13)A single-step, two-stage Runge–Kutta scheme is

adopted for the temporal integration process. The resultant n ? (B1 2 B2) 5 0
numerical procedure is capable of generating numerical

n ? (D1 2 D2) 5 rs.solutions from first-order to third-order accurate in space
and second-order accurate in time (3, 12).

In short, on a perfect conductor surface the tangential
component of the total electric field is required to vanish.INITIAL AND BOUNDARY CONDITIONS
This requirement implies that the normal component of
the total magnetic field is zero on the conductor surfaceThe initial and boundary conditions for the perfectly
(8, 9). Thus, the electromagnetic field is discontinuousconducting sphere can be summarized as follows. The inci-
across the interface of the conductors. Following previousdent wave consists of a linearly polarized harmonic field
efforts (12, 13, 24), the unknown surface current and chargepropagating in the negative z-axis direction (8).
densities are treated as finite jumps of constant value. This
formulation is compatible with the basic attribute of the

By 5 2AÏ«e sin(gt 1 kz)
(11) hyperbolic partial differential system which allows the

piecewise continuous data to propagate unaltered along aDx 5 A « sin(gt 1 kz),
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characteristic (10). The following two extrapolated numeri- and H, are now the Fourier transform variables in the
frequency domain (5, 9).cal boundary conditions for the finite jump properties at

the surface are introduced to replace the equations that
contain unknowns. It shall be emphasized that these ex- PARALLELIZATION PROCEDURE
trapolations are approximated numerical boundary condi-
tions. All present results are processed on the Cray C916/

16256, Cray T3D, IBM SP2, and Intel Paragon XP/S com-
puting systems. The Cray C90 is the only shared memoryn ? =(n 3 (H1 2 H2)) 5 0

(14) system used and has a rated peak performance of 952
n ? =(n ? (D1 2 D2)) 5 0 Mflops per processor. The vectorized version of the present

computer code has achieved a data processing rate of 610
The system of boundary conditions is closed and applicable Mflops with an average vector length of 94.7. Since this
to the PEC sphere. The combination of the Dirichlet and code is thoroughly validated with a wide range of bench-
the Neumann conditions forms two 3 3 3 matrices that marks (3, 12, 13) and demonstrates a reasonably high vec-
are solved simultaneously for the electric and the magnetic torized efficiency, it was utilized as the mainstay of the
field on the same mesh point. In so doing, the governing present effort. Among the three distributed memory sys-
equations and the boundary conditions are fully satisfied tems employed, the Paragon XP/S has 388 i860XP nodes,
on each and every mesh point of the calculated field. The while the other two systems have a 128-available-nodes
consistent resolution is in contrast to solutions obtained configuration each. In terms of the raw data processing
from a staggered mesh system. Equally importantly, the speed per node, the SP2 system leads the pack with a peak
imposed boundary conditions have been validated pre- rate of 266 Mflops. The T3D and the Paragon XP/S have
viously by comparing solutions generated from analytic peak rates of 150 and 100 Mflops respectively. In practical
boundary values (3, 5, 13). applications, the data processing rate rarely approaches

the rated peak performance.
RADAR CROSS-SECTION CALCULATION For the distributed memory computing systems, the

node-to-node and node-to-memory communication band-
The radar cross-section is a measure of the far-field dis- widths also critically affect the parallel efficiency. For the

tribution of electromagnetic energy from a scatterer. For Paragon, all nodes are connected to a mesh routing chip
a three-dimensional scattering body, the RCS is defined (MRC) through an interface module. The MRC has 10
as (5) unidirectional ports and a bandwidth of 200 Mb. On the

SP2 system, communication is performed by a high perfor-
s(u, f) 5 lim

rRy
4fr2[Hs/Hi]2 (15) mance switch (HPS) and there are multiple paths between

any two nodes. The HPS has a peak bisection bandwidth
of 2.5 Gb/S. For the T3D, the communication is carriedor
by a three-dimensional torus and the peak bisection band-
width is rated as high as 76.8 Gb/S to achieve the globals(u, f) 5 lim

rRy
4fr2[Es/Ei]2. (16)

addressable capability for all computing nodes. However,
the parallel computing performance of any message pass-

The far-field asymptotes for the RCS computation, Hs and ing multicomputers is closely tied to communication and
Es , are expressible in terms of parameters associated with latency. These features, peculiar to each system, are intro-
the near field by a near-field to far-field transformation duced by the communication protocol and operating sys-
(5, 9), tem implementation which have a profound influence on

the parallel efficiency.
In order to balance the work load and to enhance theE(K, r) 5 (iK/4f) E E

S
[Ïe/« (n 3 H)

portability of the parallelized code, the most elementary
one-dimensional (1D) domain partition is adopted for the2 (n 3 E) 3 r 2 (n ? E)r] e2iKr?r dS (17)
present investigation (22). In the present decomposition
of the three-dimensional data structure (IL 3 JL 3 KL),H(K, r) 5 (iK/4f) E E

s
[Ï«/e (n 3 E)

each planar data array (JL 3 KL) is assigned to an individ-
1 (n 3 H) 3 r 1 (n ? H)r] e2iKr?r dS, (18) ual computing node. As a consequence, the required num-

ber of computing nodes for a three-dimensional simulation
is identical to the number of mesh points along one of thewhere n and r denote the surface outward normal of the

scatterer and the unit vector of the observation direction. three coordinates. A clear advantage of the 1-D paralleliza-
tion (22–24) is that the computer program conversion fromIn addition, the dependent variables of the integrand, E
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a shared to a distributed memory system becomes very
straightforward. The computer program for a shared mem-
ory operation becomes the precise instruction for each
individual node. Other data partition strategies, including
the page structure, the pencil structure, and the block struc-
ture, may have some more degrees of control over data
movement (22, 23). The mapping strategy is algorithm
specific and an incisive grasp of system architecture is re-
quired in the coding efforts. The search for a better data
structure partition remains as one of the pacing items to-
ward high parallel efficiency for distributed memory com-
puting systems.

The data movement of the earlier approach is controlled
by a group of synchronous message passing calls (23, 24).
Specifically, for each time step advancement, a minimum
of 2 synchronous calls are issued from every node. A total

FIG. 1. Scalable performance on distributed-memory computingof 2 3 (IL-2) synchronous receptions and transmissions
systems.are performed. These calls are the absolute minimum nec-

essary to transmit the six dependent variables and the flux
vector associated with the node for the overlapping region
of the difference equations. Since the first and the last the stated purpose, the third-order in space and second-

order in time option of the computer code was used.nodes (1 and IL) are assigned to accommodate the less
computing intensive boundary values along a coordinate In Fig. 1, the timing results of two partitioned mesh

systems (Node 3 48 3 96) and (Node 3 96 3 192) fromdirection, they are also used for outputting the formatted
intermediate data. The message length is uniformly defined three distributed memory computers are given. The mes-

sage lengths of the two mesh systems span the range fromto be 48(JL 3 KL). Improvements have also been made
to the parallelized code. Specifically, several asynchronous 221,184 to 884,736 bytes. For the present data decomposi-

tion, the message length and the message passing frequencycalls are inserted to enhance the overlapping of computa-
tion and communication. In addition, an option of using are linearly proportional to the size of the partitioned mesh

system and the computing nodes in use, respectively. Thefaster mathematical operations than the strict IEEE se-
mantics (30) also was exercised for computations on the timing result is defined as the execution time required by

the present code to perform 600 time sweeps over theParagon. Substantial improvement of numerical efficiency
is noted. entire computational domain. For the smaller grid dimen-

sion, the scalability of the present version of the paral-
lelized code is reasonable. Over the number of nodesNUMERICAL RESULTS
tested, the present code has a scalable performance (based
on 32 nodes performance) on the Cray T3D, Paragon XP/The presentation of numerical results is separated into

two groups. The first group summarizes the performance S, and IBM SP2 of 98.1, 97.9, and 91.8%, respectively. The
code has the most efficient data processing rate (DPR) onof the present characteristic-based finite-volume code us-

ing 1D parallelization on the IBM SP2, the Cray T3D, and T3D (1.115 sec), followed by SP2 (1.254 sec) and Paragon
XP/S (3.026 sec). The timing results on the larger gridthe Intel Paragon computing systems. The second group

and the major portion of the present effort details four dimension indicate a progressively decreased parallel effi-
ciency of 97.83, 94.88, and 90.57 on T3D, Paragon XP/S,computations of a PEC sphere over a wave number range

from 4.6 to 20.0. Since the sphere is assigned a diameter and SP2 respectively. The DPRs from the three systems
uniformly exceed a factor of 4 in comparison with the smallof unity, the parameters of the validating Mie series have

the values of 2.3, 4.7, 5.3, and 10.0 (6, 9). The computational mesh dimension calculations, the ratio of total mesh points
between the two mesh systems. The DPR are 4.79 on T3D,domain of all the cases studied is bounded by two concen-

tric spheres, and is easily accommodated by the spherical 5.507 sec on SP2, and 14.367 sec on Paragon XP/S. This
performance behavior is a clear indication that the con-coordinate system. The inner sphere describes the unit

spherical scatterer, the outer sphere defines the truncated tention of communication path becomes significant for the
mesh system greater than (128 3 96 3 192). Among thefar-field boundary. The accuracy of RCS calculations is

examined in light of the difference between total-field and three distributed systems, the Cray T3D has a global ad-
dressable capability in data communication through ascattered-field formulations, and the effects of grid-point

density, and the placement of the far-field boundary. For three-dimensional torus. For this reason, the communica-
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FIG. 2. Numerical efficiency enhancement on the Paragon XP/S com-
puter.

FIG. 3. Grid refinement study for RCS calculation, s(u, 0.0).

tion dominant code has the best scalable parallel perfor-
and 15.0. The varying grid spacings are accommodated inmance on the Cray T3D system.
the radial (r) and the azimuthal (u) coordinates, while theThe parallel performances of the present code on the
circumferential angular displacement (=f) remains at aIBM SP2 and the Cray T3D are unavailable for a large
constant value of 48. Figure 3 depicts the normalized bi-mesh system using more than 128 nodes. The scalable per-
static RCS, s(u, 0.0), for the three different simulationsformance on the Paragon XP/S degrades discernibly when
in linear scales. It clearly demonstrates that the presentmore than 160 nodes are used concurrently (23, 24). The
calculation generated by a grid density of 15 points perscalable performance of the present code on the XP/S is
wavelength attains perfect agreement with the analytic re-in general more than 2.7 times slower than the rate on
sults (6, 9). On the linear scale, the numerical discrepancieseither the IBM SP2 or the Cray T3D. A substantial amount
of the coarser mesh computations appear to concentrateof improvement is achieved by replacing global synchro-
in the shadow region of the scatterer, but the deviations arenous message passing calls with several asynchronous calls,
nearly uniformly distributed over the entire viewing angles.using the nonstandard IEEE mathematical operation and

The normalized bistatic RCS in vertical polarization,a page locking option of the OSF/1 operating system to
s(u, 90.0) for ka 5 5.3, is presented in Fig. 4. The numericalminimize the paging faults. The numerical efficiency im-
error pattern is identical to that of the s(u, 0.0). At theprovement is presented in Fig. 2. On the smaller mesh
grid point density per wavelength of 10.0 and 12.0, thedimension, the data processing time reduces from 1840.6

to 990.5 seconds on 96 nodes. The reduction on the large
mesh (Node 3 96 3 192) is from 8608.0 to 4091.8 seconds.
These numerical efficiency improvements are by factors
of 1.86 and 2.10 respectively. Additional efficiency im-
provement for the present code is still possible; however
more effective means may have to be derived from a better
data partition approach (22). In essence, a sustained effort
must be maintained to realize the full potential of scalable
parallel systems.

The effect of grid density per wavelength on the RCS
computational accuracy by the scattered-field formulation
is presented in Figs. 3 and 4. For a unit sphere illuminated
by a linearly polarized harmonic field with a wave number
of 10.6, the ka (a is the radius of the sphere) parameter
of the Mie series then has a value of 5.3 (6). The far-field
boundary is placed at a distance of 2.53 wavelengths away
from the scatterer. Three grid systems (49 3 48 3 96), (61
3 54 3 96), and (73 3 60 3 96), were investigated, resulting

FIG. 4. Grid refinement study for RCS calculation, s(u, 90.0).in a grid point density per wavelength of about 10.0, 12.0,
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lengths. Further reduction in the size of the computational
domain by placing the truncated boundary at a distance
of less than 2.5 wavelengths from the scatterer leads to
a greater than 1% departure from the theoretical back
scattering value (6). For the ka 5 5.3 simulations, the pure
linearly polarized incident field can no longer be accurately
imposed as the incoming condition at a distance closer
than 2.5 wavelength from the scatterer. At any closer place-
ment of the far-field boundary to the scatterer, the incom-
ing far field will have to describe the interaction result of
the incident and the diffraction. Indirectly, the present
results also demonstrate that the characteristic-based
method intrinsically is an efficient and effective means for
far-field boundary condition implementation.

The pioneer efforts in RCS calculation usually employed
the total-field formulation on staggered mesh systems (2,

FIG. 5. Effect of farfield placement on RCS calculation, s(u, 0.0). 31, 32). The particular combination of numerical algorithm
and procedure has been proven to be very effective. The
total-field formulation was also utilized in conjunction with
the characteristic-based procedure in earlier RCS calcula-maximum numerical errors are 19.1 and 7.7 percent respec-

tively. The accuracy improvement is rather drastic as the tions (13, 24). An alternative approach via the scattered-
field formulation for RCS calculations has just been dem-grid point density is enriched. For the result generated

by the mesh of 15 points per wavelength, the maximum onstrated. The relative merit of these two formulations in
numerical accuracy for RCS computations has not yet beennumerical result is reduced to less than one-quarter of 1%.

Although the present numerical results are generated on quantified. The comparison of horizontally polarized RCS,
s(u, 0.0), of the total-field and the scattered-field formula-a grid with an equal increment of all independent variables

(=r, =u, =f), the contiguous cell volumes still became tions at ka 5 5.3 is presented in Fig. 7. Both numerical
results are generated under identical computational condi-highly stretched by the spherical coordinate system. The

formal order of accuracy of any finite-volume scheme will tions. The location of the truncated farfield boundary is
prescribed by a value of 2.5 wavelengths from the PECdegrade on an irregular and highly stretched mesh system

(12). Thus, most spatially second-order accurate schemes sphere. Numerical results of the total-field formulation
revealed far greater error than the scattered-field formula-may require an even higher grid point density per wave-

length to yield a solution of precision comparable to the tion. The additional source of error is incurred when the
incident wave must propagate from the far-field boundarypresent approach.

The influence of far-field boundary placement on numer- to the scatterer. In the scattered-field formulation, the inci-
ical accuracy is depicted in Figs. 5 and 6. The placement
of the numerical boundary encounters two conflicting re-
quirements in computation. In order to minimize the trun-
cation error, the truncated boundary should be placed as
close to the scatterer as possible. Meanwhile, the unper-
turbed incident boundary condition must also be located
sufficiently far from the scatterer to avoid causing signifi-
cant interference of the diffracted waves. Therefore, the
placement of the truncate boundary is strongly affected by
the numerical algorithm and the implementation of the
farfield boundary conditions. At a wave number of 10.6,
four different locations of the far field are analyzed. The
far fields are placed at 3.71, 3.20, 2.87, and 2.52 wavelengths
away from the scatterer which correspond to distances of
2.70, 2.40, 2.20, and 2.00 diameters away from the coordi-
nate origin. Both the horizontal and vertical polarized bi-
static RCSs, s(u, 0.0) in Fig. 5 and s(u, 90.0) in Fig. 6,
exhibit a progressive and consistent improvement in nu-

FIG. 6. Effect of farfield placement on RCS calculation, s(u, 90.0).merical accuracy, until r reaches a value equal to 2.5 wave-



388 J. S. SHANG

FIG. 8. Comparison of total-field and scattered-field formulation,FIG. 7. Comparison of total-field and scattered-field formulation,
ka 5 5.3 s(u, 0.0). ka 5 5.3 s(u, 90.0).

stringent. Solutions generated by both formulations showdent field data are described precisely by the boundary
excellent agreement on a (73 3 48 3 96) grid and have acondition on the scatterer surface. Since the far-field elec-
difference greater than a few percent on a (49 3 48 3 96)tromagnetic energy distribution is derived from the near
grid. The former is supported by a fine grid density perfield parameters (5, 6, 9), the advantage of describing the
wavelength of 24.96. Since we are interested in extendingincident data without error on a scatterer is tremendous.
the application range of the present approach to high fre-The accumulated numerical errors in RCS computation
quency, the detailed comparison is not presented here.through the integral transformation process manifest in

Another important issue of RCS calculations is the timethe predicted magnitude over the entire range of view-
elapsed for the transient period to subside after the initialing angles.
incidence and the sampling duration. Figure 9 depicts theIn Fig. 8, the vertically polarized RCS s(u, 90.0) of the
difference between the sampling durations of one and twoka 5 5.3 case substantiates the previous observations. In
periods (1.3659 seconds) after the transition period. Thefact, the numerical error of the total-field calculation is
difference between two calculated RCSs, s(u, 0.0), is aboutexcessive in comparison with that of the scattered-field
1.6% and is concentrated at the viewing angle of 59.58. Informulation. Results of the scattered-field formulation
the present analysis, the transient period of a scatteringoverpredict the theoretical value by 2.7%. The deviation

of the total-field result from the theory however exceeds
25.6% and is unacceptable. In addition, computations by
the total-field formulation exhibit a strong sensitivity to
the placement of the far-field boundary. A small perturba-
tion of the far-field boundary placement leads to a drastic
change in RCS prediction: a feature resembling the ill-
posedness condition which is highly undesirable for numer-
ical simulation. Since there is very little difference in com-
puter coding for the two formulations, computing times
required for identical simulations are insignificant. On the
Cray C90, 1,505.3 s at a DPR of 528.8 Mflops is needed to
complete a sampling period. At present, the most efficient
calculation on a distributed memory system has reduced
the processing time to 1,204.2 seconds.

Similar behaviors of solutions generated by the total-
field and the scattered-field at a lower frequency, ka 5 2.3,
are also observed. At the lower frequency, the theoretical
far-field limit reduces to 1.462 diameters from the sphere.

FIG. 9. RCS of a PEC sphere, ka 5 2.3 s(u, 0.0).The numerical resolution requirement becomes even more
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obvious that substantial improvement of parallel numerical
efficiency is urgently needed for CEM applications.

CONCLUDING REMARKS

A finite-volume, characteristic-based procedure for solv-
ing the time-dependent, three-dimensional Maxwell equa-
tions has been mapped onto three distributed memory
computers, the Intel Paragon XP/S, the IBM SP2, and the
Cray T3D. For the present one-dimensional data parti-
tioning approach, the most efficient scalable parallel per-
formance is achieved on the T3D system. Additional effort
to realize fully scalable high performance computing is still
urgently required.

In the PEC sphere radar cross-section calculations over
a range of frequency and dimension parameters, 2.3 ,

FIG. 10. RCS of a PEC sphere, ka 5 10.0 s(u, 0.0). ka , 10.0, the scattered-field formulation is superior by far
to the total-field formulation. Under identical simulation
conditions, the scattered-field formulation not only gener-
ates more accurate RCS but also has a more robust numeri-phenomenon is defined as the time elapsed from the instant

that a harmonic incident wave is introduced at the incoming cal behavior than that of the total-field formulation.
On a unified mesh system, the present characteristic-farfield until a periodic diffraction pattern is established.

By monitoring the magnetic surface current and the electric based code needs a 15 grid point per wavelength density for
the scattering simulations to achieve engineering accuracy.surface charge in the shadow region on the sphere, a har-

monic diffraction is detected after an elapsed time equal The present method also exhibits an attractive and effec-
tive feature for farfield boundary condition implementa-to about 4.5 periods (24). The rather lengthy transient

period is required if the entire simulated field is assumed to tion. For most of the cases simulated, the far-field boundary
is placed as close as 2.5 wavelengths away from the sphere.be quiescent initially. More efficient numerical procedures

have been devised by imposing the impingement of inci-
dence at the start. The transient period is observed to APPENDIX: NOMENCLATURE
reduce by a factor of two. In any event, the present RCS
results have demonstrated the achievement of a statistically B Magnetic flux density

D Electric displacementstationary state.
The highest frequency computation of the present analy- E Electric field intensity

H Magnetic field intensitysis using the scattered-field formulation is for a wave num-
ber of 20 and the ka parameter of 10. For this simulation, i, j, k Indices of discretized volume

J Electric current densitythe farfield boundary is placed 3.0 wavelengths away from
the sphere. A (97 3 96 3 192) mesh system is adopted to k Wave number, 2f/l

n Surface outward normalyield a grid point density per wavelength of 16.167. The
initial condition is prescribed at the instant that the unper- r, u, f Spherical polar coordinates

Ro Radius of outer sphereturbed incident just begins to illuminate the sphere. The
bistatic RCSs are sampled at elapsed times of 1.667, 2.017, S Surface of a control volume

t Time2.377 periods (the duration of one period is 0.3142 s). Only
the horizontally polarized bistatic RCSs distributions, s(u, U Dependent variable

V Elementary cell volume0.0), are given in Fig. 10. It is observed that the RCS
calculations have reached an acceptable statistically sta- j, h, z General curvilinear coordinates

« Electric permittivitytionary state after an elapsed time of about two periods.
The maximum deviation among all three results is confined e Magnetic permeability

l Wave lengthto within 4.7% and the difference between the last two
samplings is less than 1.3%. The data processing time for s Normalized RCS

g Angular frequencya sampling period on the Cray C90 is 12,475.9 s at a data
processing rate of 613.4 Mflops. The best performance of Superscripts Flux component associated with

1, 2 positive and negative eigenvaluethe present parallel code on a distributed memory proces-
sor still requires 9,984.9 s to process the identical case. It is T Transpose of a vector
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